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Abstract 
The effect of small delays in the state derivative feedback control loop is studied. Such an 

unusual feedback has proved useful in system vibration suppression, which is used here as a case 
study example. It is shown that even very small delays at the system inputs can destroy stability of 
the closed loop system. To prevent such fragility with respect to the delays, the strong stability 
concept developed for the neutral time delay systems is adopted. It is demonstrated that only such 
feedback gains can practically be used for which the closed loop system is strongly stable. 

Abstrakt 
 Článek se zabývá studiem vlivu malých dopravních zpoždění na stabilitu systému, který je 

řízen derivační stavovou zpětnou vazbou. Tuto neobvyklou zpětnou vazbu je možné s výhodou využít 
k potlačení vibrací systému, jak je ukázáno na prezentovaném aplikačním příkladu. Je také ukázáno, 
že i velmi malá dopravní zpoždění mohou způsobit nestabilitu uzavřeného regulačního obvodu. 
K zamezení vzniku takto křehké stability vzhledem ke zpožděním je aplikován koncept silné stability 
neutrálních systémů. Z praktického hlediska pouze takové koeficienty zpětné vazby mohou být 
použity pro řízení, pro které je uzavřený regulační obvod silně stabilní. 

 1 INTRODUCTION 
Vibrations may be undesirable in dynamical systems for a host of reasons. They can affect 

product quality or functionality of products e.g. in the manufacturing of tools. They can affect system 
performance e.g. in delicate machines that may require vibration isolation. They can affect personal 
comfort e.g. vibrations in vehicle suspension systems. It is no surprise then that the need commonly 
arises for such vibrations to be suppressed in dynamical systems. 

In vibration control problems, accelerometers are typically used for measuring the system 
motion. Accelerations are typically the sensed variables as opposed to displacements. When one 
considers feedback controller implementation, the question of acceleration feedback and indeed state 
derivative feedback naturally arises. Much attention has been paid to this control problem in the 
literature. The application of acceleration feedback to vibration suppression problems has been 
discussed at length in [8,11]. A general pole placement technique for state derivative feedback was 
proposed in [12] for single-input systems and its application to vibration problems was emphasised. 
Following from this, the same authors proposed an LQR technique for computing state derivative 
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feedback for multiple-input systems in [1]. The application of state derivative feedback to vibration 
problems has also been discussed from the perspective of robust control in [10]. 

Even when a dynamical system is modelled as ordinary differential equations, it is extremely 
important to consider latencies which arise from the application of a control action [6]. Such latencies 
can occur due to e.g. computational delays, AD-DA conversion, or communication delays. The role 
of latency phenomena on system stability is of crucial importance when one considers systems with 
state derivative feedback. It is shown that the application of state derivative feedback renders a 
system of the neutral type. This induces complications with respect to system stability due to the fact 
that the system may be very sensitive even to infinitessimal delay changes [14]. For this reason, the 
notion of strong stability is utilised from [2,3]. This ensures robustness of stability w.r.t. delay 
perturbations. 

The remainder of the paper is structured as follows: firstly a vibration suppression problem is 
presented as a motivating example. Then the pertinent issues of state derivative feedback and neutral 
equations are discussed. Finally, a case study is presented where the results of this study are analysed 
and compared to those in the literature. 

 2 CASE STUDY 
As the motivation example we adopt the vibration suppression example presented in [1], 

which is shown in Fig. 1. A linear state space formulation of the system, with states 
, assuming  to be small, is given by 

   (1) 

where , ,  and .  and  are the mass 
and inertia of the mass respectively,  and  are the spring constants,  and  are the damping 
constants,  is the distance between the two supports,  is the angle of inclination of the mass with 
the horizontal,  is the displacement of the centre of the mass,  and  are the displacements of 
the sides of the mass and  and  are the control inputs. The objective of applying such control 
inputs is to interchange or dissipate kinetic and potential energy effectively such that system 
vibrations are reduced. One way of achieving this is by altering damping and stiffness characteristics 
of the system e.g.  and . Alternatively the system actuators (piezo-actuators or linear motors) 
controlled by the inputs u can simply displace the system thus counteracting the vibrations present 
and setting the system to rest. 
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Fig. 1 Scheme and parameters of the vibration suppression example 

The design objective is to achieve vibration suppression using a state derivative feedback 
controller. In the next section, we provide a short introduction to the theory of state derivative 
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feedback design.  Next, we concentrate on the stability consequences of the small uncertain delays 
appearing in the state derivative feedback loop.     

 3 INTRODUCTION TO STATE DERIVATIVE FEEDBACK 
Let us consider a system of the form 

  (2) 

where  is the state and  are the inputs. It is assumed that  is of full rank, i.e. the 
system is state controllable and has no root at origin of the complex plane [1]. It is desired to design a 
stabilising controller of the form 

  (3) 

The closed loop system then takes the form 

  (4) 

The design problem is to compute a feedback gain matrix  such that the closed loop poles 
are located in the open left half complex plane. This is achieved through a system transformation to 
the Frobenius canonical form and by applying a technique similar to that applied in the derivation of 
the Ackermann formula for state feedback. For derivations of the Ackermann formula for state 
feedback and the equation for state derivative feedback the reader is referred to [9] and [12] 
respectively. The formula derived in [12] can be generalised, using work presented in [5] to compute 
state derivative feedback gains for MIMO systems. 

It is important to note that a relationship can be derived between state feedback and state 
derivative feedback. From [1], the following relationship can be derived 

  (5) 

So the following relationship can be stated 

  (6) 

This is an interesting result considering the fact that algorithms for calculating state feedback gains 
are widely available in software packages such as MATLAB [4]. This relationship is used to obtain 
the results presented in this work, unless otherwise stated. Obviously, under the condition stated in 
the beginning of this section, the dynamics of the system can be assigned by (3) as if the classical 
state feedback is used. However, as will be shown in the next section, the state derivative feedback 
system (4) can be critically fragile w.r.t. small delays in the feedback loop.     

 4 THE EFFECT OF SMALL DELAYS IN STATE DERIVATIVE FEEDBACK 
In real systems, it is inevitable that small uncertain time delays may occur in the feedback loop 

of an applied control algorithm. Recalling equation (1), and rewriting the equation considering such 
delays, we obtain the system in the form 

  (7) 

where  are the delays arising in the feedback loop of the system. The summation over the input 
terms is necessary, due to the fact that each individual input may have a corresponding unique delay 
value. Now considering the state derivative feedback (3) (for simplicity, we use the notation 

), the closed loop system changes from the form (4) to 
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  (8) 

Let us point out that equation of the form (8) is referred to as a neutral differential equation. A 
characteristic of neutral equations is that delays are present in the derivative of the state. Such a 
system description induces complications when one considers system stability. The concept of a 
strongly stable solution, introduced in [3], must therefore be considered. 

 4.1 Strong stability of neutral systems 
For system (8) we can define the associated difference equation given by 

  (9) 

Now, let us define the smallest real upper bound of the infinite spectrum of the neutral system 
(8) as 

   (10) 

where  is the characteristic function of (8). Analogously let us define 

  (11) 

as the smallest real upper bound of the infinite spectrum of the associated difference equation (9), 
where  is its characteristic function. In both (10) and (11),  is a vector of the delays present in 
the system, e.g. .  

It has been shown in [2, 3] see also [7, 14] that 

  (12) 

Therefore, the necessary condition for stability of neutral system (8) is stability of the associated 
difference equation (9).  

It has also been shown in [2,3], see also [7, 14], that although the smallest upper bound (11) is 
continuous in the coefficients of the matrices , it is not continuous in the delays . A major 
consequence of this non-continuity is that arbitrarily small delay perturbations may destroy stability 
of the difference equation. Thus, the stability for given fixed delays is not sufficient from the 
robustness point of view. Therefore the concept of strong stability has been introduced in [2, 3]. It can 
be stated that the solution of difference equation (10) is strongly stable if it remains stable when 
subjected to small variations in the delays. In [2,3] the criterion for evaluating the strong stability is 
derived as follows. The solution of the delay difference equation (10) is strongly stable if and only if  

  (13) 

As can be seen from (13), the strong stability is independent of the value of the delays. This means 
that the stability locally in the delays is equivalent with the stability globally in the delays [2, 3, 14]. 
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Let us also remark that if  then equation (9) is unstable for rationally independent1 delays,      
[2, 3]. Moreover, in such a case, the closed loop system has infinitely many unstable roots.  

 5 CASE STUDY RESULTS 
In this section, first we study the effects of small delays in the closed loop system (1) - (2) for 

the feedback gain derived in [1]. Next, we design a feedback gain which provides strongly stable 
solution of the system.   

 5.1 Analysing the effect of delays in the vibration suppression example 
Recall the system (1) presented in section 2 and consider the stabilising state derivative 

feedback gain matrix from [1] 

  (14)  

The corresponding roots of the closed loop system are  and 
. The transient response of this delay free closed loop system from an 

initial state  can be seen in Figure 2-left. The system response 
shows desirable characteristics, namely a settling time of approximately . 

Now the effects of small uncertain delays in the feedback loop are analysed. Consider the 
vibration system in the form of (8), i.e. with delays at the system inputs. Even though the values of 
the delays are not known, for demonstration purposes we consider them here as . 
Evaluating the strong stability condition according to (13) results in . Thus the difference 
equation associated with the closed loop system is not strongly stable. Notice that the delays are 
rationally independent, therefore the system is not stable, as can be seen from the responses in Figure 
2 - right. This fact can also be verified by computing the spectrum of the system, using e.g. the quasi-
polynomial based root-finder (QPmR) presented in [13].  

 
Fig. 2 Response of the closed loop system (1)-(2) with the gain (15): left – no delays, right – delays 

 at the inputs. 

                                                                                                                                                                   
1 Delay terms e.g.  and  are deemed to rationally independent if their ratio is an irrational number.  
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Fig. 3 Spectrum of the closed loop system, considering the effects of delays  at 
the inputs, left – using the feedback gain (14), right – using the feedback gain (15)  circles - roots of 

neutral system (8), + - roots of the associated difference equation  (9) 

The spectrum of the closed loop system can be seen in Figure 3-left. It is evident from the 
figure that for the given delays, the system is unstable with infinitely many unstable roots. Notice that 
even though the delays are very small compare to the magnitudes of the roots  and , both 
smallest upper bounds of the spectra are very large, i.e. . Interestingly, as it 
has been shown in [15] see also [14], the smaller the values of the rationally independent delays, the 
larger are the upper bounds. It is important to recognise that the algorithms to compute state 
derivative feedback gains cited in this work [1, 12] do not consider the necessity of a strongly stable 
solution. However, from the robustness point of view, the feedback gain should satisfy the condition 
(13), as it is not the case for the gain (14).  

 5.2 Strongly stable implementation   
In this section, a procedure is used to search the root space for potential strongly stable 

solutions of the state derivative feedback implementation. The result is optimised in the sense that the 
solution with greatest robustness to small delay perturbations, i.e. the solution with , is 
chosen. The procedure which is used can be summarised as follows: First, bounds on  are 
selected as an upper bound of  and lower bound of . Then the damping 
constraints corresponding to the line  are imposed on the search space. Over the 
region defined by these bounds, the mesh-grid is defined with the grid-step of . Furthermore for 
all possible combinations of the root positions over the grid points defined above, the feedback gain 

 is computed using the pole placement procedure. In the interest of computational simplicity, the 
roots of the solution are chosen to be complex conjugates only. The MATLAB algorithm place.m [4] 
is used to compute the state feedback gain at each combination of the pole positions and then the 
corresponding state derivative feedback gains are computed using the relationship in equation (6). 
Besides, also the strong stability quantity  is computed for each . 

It is interesting to consider the variation of  w.r.t. changes in root locations. In Figure 4,  
is plotted as a function of  and  while  are held constant at . It is 
interesting to note that only an area of high frequency poles close to the origin give rise to an 
exponentially unstable solution. This information would suggest that the solution can be arbitrarily 
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Fig. 4 Variation of  w.r.t. one pair  of complex conjugate system roots over the defined mesh 
grid, while = . Notice that due to proper scaling of the figure,   surface is cut by the 

level . However, obviously  attains much larger values at the cut region 

 
Fig. 5 Response of the closed loop system (1)-(2) with the gain (15) and the delays 

 at the inputs 

chosen outside of this region. In the interest of solution robustness however, the solution with 
 is chosen instead, for which ,  and  

  (15) 

As can be seen in Figure 5, the closed loop system shows good response characteristics, even 
in the presence of small time delays. A settling time of approximately  is observed. Let us remark 
that the delay free closed loop system has almost identical responses as those shown in Figure 5 and 
therefore they are not presented here. As a basis for comparison with the results obtained by (14), the 
spectrum of the closed loop system under the influence of the small time delays is presented in Figure 
3-right. Obviously the infinitely many roots are bounded from the right by the upper bound 

, which is safely far from the stability boundary. 

 6 CONCLUSIONS 
In the paper, we demonstrated on the vibration suppression example that the stability achieved 

by the state derivative feedback can be dangerously fragile with respect to small delays in the 
feedback loop. It has been shown that even negligibly small delays can introduce infinitely many 

61 



roots to the right half of the complex plane. Therefore, to obtain a practically applicable solution, the 
resulting dynamics need to be checked using the theory of strong stability developed for neutral 
systems. Only such feedback gains are acceptable for the state derivative feedback, for which the 
closed loop system is strongly stable.  
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